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Final Exam Announcement (same as before)

• Date & time: June 12 (Mon), 7:30 - 8:30 PM

• Place: IT.BT 507, 508

– Student list for each room will be announced soon.

• Scope: Lecture & Lab 8 ~ 13

• You cannot leave until 30 minutes after the start of the exam 
even if you finish the exam earlier.

• That means, you cannot enter the room after 30 minutes from 
the start of the exam (do not be late, never too late!).

• Please bring your student ID card to the exam.
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Scan Conversion
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Recall: Rendering Pipeline

Vertex Processing

Primitive Processing

Scan Conversion 

(Rasterization (in a narrow 

sense))

Fragment Processing

Per-sample Operations

input: vertices in each object's space

vertices in screen space

primitives in screen space

fragments

– at least one fragment per pixel

shaded fragments

output: image
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• Scan conversion process converts vertex representation 
to pixel representation (fragments).

• First job: Determine which fragments belong to a 
primitive.

• Second job: Interpolate values across the primitive.

– e.g., interpolated colors / normals / texture coordinates, …

Scan Conversion
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Scan Conversion

• Algorithms for finding fragments for a primitive are called 
"drawing" algorithms.

• A primitive refers to basic geometric shapes such as points, 
lines, circles, and polygons.

• Line drawing algorithms

– Digital differential analyzer (DDA)

– Bresenham's line algorithm (1962)

– Xiaolin Wu's line algorithm(1991)

– …
• For details, refer to 

https://www.tutorialspoint.com/computer_graphics/line_generation_algorithm.htm

https://www.tutorialspoint.com/computer_graphics/line_generation_algorithm.htm
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Scan Conversion

• Circle drawing algorithms

– Midpoint circle algorithm

– Bresenham's circle algorithm

– Xiaolin Wu's circle algorithm

– ...
• For details, refer to 

https://www.tutorialspoint.com/computer_graphics/circle_generation_algorithm.htm

• Polygon drawing algorithms

– Scanline

– Boundary fill

– Flood fill

– …
• For details, refer to 

https://www.tutorialspoint.com/computer_graphics/polygon_filling_algorithm.htm

https://www.tutorialspoint.com/computer_graphics/circle_generation_algorithm.htm
https://www.tutorialspoint.com/computer_graphics/polygon_filling_algorithm.htm
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Scan Conversion

• We'll just skip details of these algorithms.

• Actually, these tasks are not so easy as one might think.

– Computational efficiency, anti-aliasing, ...

• But most graphics APIs (including OpenGL) basically support 
these operations.

– These algorithms were intensively studied in early days of computer 
graphics, so quite mature now.

– Now these algorithms are implemented in graphics hardware (GPU).

• So nowadays you can think that you can simply draw them by 
making use of graphics APIs.



Visibility Problem
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Visibility Problem

• What is VISIBLE?

Red: viewing frustum, Blue: objects  
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Visibility Problem

• The answer is:
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Visibility Problem

• What is NOT VISIBLE?
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Visibility Problem

• What is NOT VISIBLE?

• Primitives outside the 

viewing frustum
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Visibility Problem

• What is NOT VISIBLE?

• Primitives outside the 

viewing frustum

• Back-facing primitives
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Visibility Problem

• What is NOT VISIBLE?

• Primitives outside the 

viewing frustum

• Back-facing primitives

• Primitives occluded by other 

objects closer to the camera
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Visibility Problem

• These invisible primitives 
should be removed because…

• No need to spend time to process 
invisible vertices and polygons.

• A close object must hide a farther 
one.

• So, removing these primitives is 
required for efficient and correct 
rendering.
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Visibility Problem

• Removing...

• Primitives outside the viewing frustum

• → Clipping (Viewing frustum culling)

• Back-facing primitives

• → Back-face culling

• Primitives occluded by other objects closer to the camera

• → Hidden surface removal
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Clipping (Viewing Frustum Culling)

• Removing primitives outside the viewing 
frustum

• Clipping is performed in clip space.

– Recall: A point (x',y',z') in NDC space remains 
unclipped if it's in canonical view volume (== 
if -1 ≤ x',y,'z' ≤ 1).

– A point (x,y,z,w) in clip space remains 
unclipped if -w ≤ x,y,z ≤ w.
• By clipping before perspective division (in clip space), it 

saves time by not computing perspective division for the 
clipped primitives.

– Computation is much simpler than view space.

– That's why the space's name is "clip space".

X
X z

x

y

w

x / w 

y / w 

z / w 
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Clipping (Viewing Frustum Culling)

• Line clipping algorithms

– Cohen–Sutherland (1967)

– Cyrus–Beck (1978)

– Liang–Barsky (1984)

– ...

• Polygon clipping algorithms

– Sutherland–Hodgman (1974)

– Weiler–Atherton (1977)

– ...

• For details, refer to 
https://www.tutorialspoint.com/computer_graphics/v
iewing_and_clipping.htm

https://www.tutorialspoint.com/computer_graphics/viewing_and_clipping.htm
https://www.tutorialspoint.com/computer_graphics/viewing_and_clipping.htm
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Clipping (Viewing Frustum Culling)

• Polygon clipping algorithms are more 
complicated.

– Vertices may be added to or deleted from the 
triangle.

• Again, let’s just skip details of these 
algorithms.

• Most graphics APIs (including OpenGL) 
performs clipping by default.

– You just set the view frustum, then OpenGL will 
do clipping for you.

triangle → quad
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Back-Face Culling

• Removing back-facing primitives

• Determined by the dot product of 

normal and view (camera) 

vectors.

Discard!

* This image is from the slides of  Prof. JungHyun Han (Korea Univ.): http://media.korea.ac.kr/book/
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Back-Face Culling

• Back-face culling is performed in NDC space.

– Because in NDC space, we can use a single view vector, 

(0,0,1), which is much more efficient.

view 
vector

* This image is from the slides of  Prof. JungHyun Han (Korea Univ.): http://media.korea.ac.kr/book/
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Back-Face Culling

* This image is from https://help.autodesk.com/view/MAYAUL/2024/ENU/?guid=GUID-

B7F70ACE-0F3F-483B-83B5-D9711D6CBAAC
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Hidden Surface Removal

• Removing primitives occluded by 

other objects closer to the camera

• Also known as

– Hidden Surface Elimination

– Hidden Surface Determination

– Visible Surface Determination

– Occlusion Culling
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Hidden Surface Removal

• Many algorithms

– Z-buffering (a.k.a. Depth buffering)

– Painter’s algorithm

– BSP tree

– ...

• Z-buffering is the standard method.

• Let’s see the ideas of Painter’s algorithm & Z-

buffering.
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Painter’s Algorithm

• Sorts all polygons based on their distance from the viewer, or 
depth, and then paints them in this order, farthest to closest.

• Polygons that are closer to the viewer will be drawn on top of 
polygons that are farther away.

• Works on a polygon-by-polygon basis.
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Weakness of Painter’s Algorithm

• What if there are cycles in the sorted 
graph?

– The only solution is dividing these polygons 
into small pieces.

• Requires sorting all polygons by their 
depth whenever the viewer's perspective 
or object placement changes.

• → Time-consuming!
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Z Buffering

• Maintain a separate buffer called the z-buffer (a.k.a. depth 
buffer), which stores the depth of each pixel on the screen. 

• During the rendering process, for each pixel being 
processed, the z-buffer is checked to determine if the new 
object being rendered is closer to the viewer than the 
existing object.

– If it is closer, the new object is drawn, and its depth value is updated 
in the z-buffer. 

– If it is farther away, the new object is discarded, and the existing 
object remains visible.

• Works on a pixel-by-pixel basis.



Z-Buffering: Algorithm
allocate depth_buffer; // Allocate depth buffer → Same size as viewport.

for each pixel (x,y) // For each pixel in viewport.

write_frame_buffer(x,y,backgrnd_color); // Initialize color.

write_depth_buffer(x,y,farPlane_depth); // Initialize depth (z) buffer.

for each polygon // Draw each polygon (in any order).

for each pixel (x,y) in polygon // Rasterize polygon.

color = polygon’s color at (x,y);

pz = polygon’s z-value at (x,y);// Interpolate z-value at (x, y).

if (pz < read_depth_buffer(x,y)) // If new depth is closer:

write_frame_buffer(x,y,color); //   Write new (polygon) color.

write_depth_buffer(x,y,pz); //   Write new depth.

Frame buffer Z-buffer (Depth buffer)



* The following slide is from the slides of Prof. Kayvon Fatahalian and Prof. Keenan Crane (CMU): 

http://15462.courses.cs.cmu.edu/fall2015/ 
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Rendering Pipeline Again

Vertex Processing

Primitive Processing

Scan Conversion 

(Rasterization (in a narrow 

sense))

Fragment Processing

Per-sample 

Operations

input: vertices in each object's space

vertices in screen space

primitives in screen space

fragments

– at least one fragment per pixel

shaded fragments

output: image

Clipping & 

Back-face 

culling

Depth test
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Pipeline Input

Vertex Processing

Primitive Processing

Scan Conversion 

(Rasterization (in a narrow 

sense))

Fragment Processing

Per-sample 

Operations

input vertices in each object's space

Clipping & 

Back-face 

culling

Depth test

transform matrices

textures, lighting model

Pipeline inputs:

• Input vertex data

• Programs that define vertex / fragment 

processing stages: vertex / fragment 

shaders

• Parameters for computing vertex 

positions in normalized coordinates: 

transform matrices

• Parameters for computing fragment 

color: texture, lighting model



Hanyang University CSE4020, Yoonsang Lee

Pipeline Input

Vertex Processing

Primitive Processing

Scan Conversion 

(Rasterization (in a narrow 

sense))

Fragment Processing

Per-sample 

Operations

input vertices in each object's space

Clipping & 

Back-face 

culling

Depth test

transform matrices

textures, lighting model

• The black stages are automatically 

performed by the system.

• The red stages are performed by the 

program you provide, using inputs you 

provide.

• That is why we have been focusing on the 

red stages in this lecture, and the black 

stages were covered only for today.

• I believe you now have the ability to create 

your own software renderer that 

encompasses the entire process.
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Lab Session

• We don't have a lab today!



Course Wrap-up
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Do you remember?

- What is Computer Graphics?

• The study of creating, manipulating, and displaying 

visual content using computers.

mathematical or 

geometrical 

models

image or 

animation (a series 

of images)

Computer Graphics

Computer Vision
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Questions about Computer Graphics

• To do this, we should be able to answer:

• (Common: )

• How to express movement, placement, shape, and 

appearance of objects

• (About rasterization: )

• How to map 3D objects into 2D screen

• How the whole rendering process is performed



Movement & 

placement

3 - Transformations

4 - Affine Space Frame Matrix

7 - Hierarchical Modeling, Mesh

9 - Orientation & Rotation

10 - Character Animation

11 - Curves

Mapping to 2D 

screen

5 - Vertex Processing 1

6 - Vertex Processing 2

Shape
7 - Hierarchical Modeling, Mesh

11 - Curves

Appearance
8 - Lighting

12 - More Lighting, Texture

Rendering Pipeline
2 - Rendering Basics

13 - Scan Conversion, Visibility
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How do you feel?

• If you’ve had more fun in this course than other 

courses, you already have the potential to do 

interesting research in computer graphics!

• I think, passion is the most important thing in 

computer graphics.

– That was the starting point for me on this path.
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If "computer graphics" truly feels enjoyable

to you,

• + If you want to do a project related to character 

animation:

– You can apply for a graduation project with me in your 

4th year.

• + If you want to work more directly on character 

animation and study earlier:

– Please email me: yoonsanglee@hanyang.ac.kr

mailto:yoonsanglee@hanyang.ac.kr
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Characteristics of Computer Graphics Research

• Requires a lot of programming.

– If you like programming and have confidence, you are 

likely to do well.

• The fascinating aspect is that all the research 

findings are presented in a visible format.

– In the field of computer graphics, a video is always 

attached when submitting a paper.
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Computer Graphics and Robotics Lab.

• Website:

https://cgrhyu.github.io/

• Youtube channel:

https://www.youtube.com/@cgrlab

• Feel free to visit these sites anytime and take a look

around.

https://cgrhyu.github.io/
https://www.youtube.com/@cgrlab


Thanks for 

being a great 

class!
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