
Computer Graphics

13 – Scan Conversion, Visibility

Yoonsang Lee

Hanyang University

Spring 2023

Hanyang University CSE4020, Yoonsang Lee

Final Exam Announcement (same as before)

• Date & time: June 12 (Mon), 7:30 - 8:30 PM

• Place: IT.BT 507, 508

– Student list for each room will be announced soon.

• Scope: Lecture & Lab 8 ~ 13

• You cannot leave until 30 minutes after the start of the exam
even if you finish the exam earlier.

• That means, you cannot enter the room after 30 minutes from
the start of the exam (do not be late, never too late!).

• Please bring your student ID card to the exam.

Hanyang University CSE4020, Yoonsang Lee

Outline

• Scan Conversion

• Visibility Problem

– Clipping (Viewing frustum culling)

– Back-face culling

– Hidden surface removal

• Rendering Pipeline Again

• Course Wrap-up

Scan Conversion

Hanyang University CSE4020, Yoonsang Lee

Recall: Rendering Pipeline

Vertex Processing

Primitive Processing

Scan Conversion

(Rasterization (in a narrow

sense))

Fragment Processing

Per-sample Operations

input: vertices in each object's space

vertices in screen space

primitives in screen space

fragments

– at least one fragment per pixel

shaded fragments

output: image

Hanyang University CSE4020, Yoonsang Lee

• Scan conversion process converts vertex representation
to pixel representation (fragments).

• First job: Determine which fragments belong to a
primitive.

• Second job: Interpolate values across the primitive.

– e.g., interpolated colors / normals / texture coordinates, …

Scan Conversion

Hanyang University CSE4020, Yoonsang Lee

Scan Conversion

• Algorithms for finding fragments for a primitive are called
"drawing" algorithms.

• A primitive refers to basic geometric shapes such as points,
lines, circles, and polygons.

• Line drawing algorithms

– Digital differential analyzer (DDA)

– Bresenham's line algorithm (1962)

– Xiaolin Wu's line algorithm(1991)

– …
• For details, refer to

https://www.tutorialspoint.com/computer_graphics/line_generation_algorithm.htm

https://www.tutorialspoint.com/computer_graphics/line_generation_algorithm.htm

Hanyang University CSE4020, Yoonsang Lee

Scan Conversion

• Circle drawing algorithms

– Midpoint circle algorithm

– Bresenham's circle algorithm

– Xiaolin Wu's circle algorithm

– ...
• For details, refer to

https://www.tutorialspoint.com/computer_graphics/circle_generation_algorithm.htm

• Polygon drawing algorithms

– Scanline

– Boundary fill

– Flood fill

– …
• For details, refer to

https://www.tutorialspoint.com/computer_graphics/polygon_filling_algorithm.htm

https://www.tutorialspoint.com/computer_graphics/circle_generation_algorithm.htm
https://www.tutorialspoint.com/computer_graphics/polygon_filling_algorithm.htm

Hanyang University CSE4020, Yoonsang Lee

Scan Conversion

• We'll just skip details of these algorithms.

• Actually, these tasks are not so easy as one might think.

– Computational efficiency, anti-aliasing, ...

• But most graphics APIs (including OpenGL) basically support
these operations.

– These algorithms were intensively studied in early days of computer
graphics, so quite mature now.

– Now these algorithms are implemented in graphics hardware (GPU).

• So nowadays you can think that you can simply draw them by
making use of graphics APIs.

Visibility Problem

Hanyang University CSE4020, Yoonsang Lee

Visibility Problem

• What is VISIBLE?

Red: viewing frustum, Blue: objects

Hanyang University CSE4020, Yoonsang Lee

Visibility Problem

• The answer is:

Hanyang University CSE4020, Yoonsang Lee

Visibility Problem

• What is NOT VISIBLE?

Hanyang University CSE4020, Yoonsang Lee

Visibility Problem

• What is NOT VISIBLE?

• Primitives outside the

viewing frustum

Hanyang University CSE4020, Yoonsang Lee

Visibility Problem

• What is NOT VISIBLE?

• Primitives outside the

viewing frustum

• Back-facing primitives

Hanyang University CSE4020, Yoonsang Lee

Visibility Problem

• What is NOT VISIBLE?

• Primitives outside the

viewing frustum

• Back-facing primitives

• Primitives occluded by other

objects closer to the camera

Hanyang University CSE4020, Yoonsang Lee

Visibility Problem

• These invisible primitives
should be removed because…

• No need to spend time to process
invisible vertices and polygons.

• A close object must hide a farther
one.

• So, removing these primitives is
required for efficient and correct
rendering.

Hanyang University CSE4020, Yoonsang Lee

Visibility Problem

• Removing...

• Primitives outside the viewing frustum

• → Clipping (Viewing frustum culling)

• Back-facing primitives

• → Back-face culling

• Primitives occluded by other objects closer to the camera

• → Hidden surface removal

Hanyang University CSE4020, Yoonsang Lee

Clipping (Viewing Frustum Culling)

• Removing primitives outside the viewing
frustum

• Clipping is performed in clip space.

– Recall: A point (x',y',z') in NDC space remains
unclipped if it's in canonical view volume (==
if -1 ≤ x',y,'z' ≤ 1).

– A point (x,y,z,w) in clip space remains
unclipped if -w ≤ x,y,z ≤ w.
• By clipping before perspective division (in clip space), it

saves time by not computing perspective division for the
clipped primitives.

– Computation is much simpler than view space.

– That's why the space's name is "clip space".

X
X z

x

y

w

x / w

y / w

z / w

Hanyang University CSE4020, Yoonsang Lee

Clipping (Viewing Frustum Culling)

• Line clipping algorithms

– Cohen–Sutherland (1967)

– Cyrus–Beck (1978)

– Liang–Barsky (1984)

– ...

• Polygon clipping algorithms

– Sutherland–Hodgman (1974)

– Weiler–Atherton (1977)

– ...

• For details, refer to
https://www.tutorialspoint.com/computer_graphics/v
iewing_and_clipping.htm

https://www.tutorialspoint.com/computer_graphics/viewing_and_clipping.htm
https://www.tutorialspoint.com/computer_graphics/viewing_and_clipping.htm

Hanyang University CSE4020, Yoonsang Lee

Clipping (Viewing Frustum Culling)

• Polygon clipping algorithms are more
complicated.

– Vertices may be added to or deleted from the
triangle.

• Again, let’s just skip details of these
algorithms.

• Most graphics APIs (including OpenGL)
performs clipping by default.

– You just set the view frustum, then OpenGL will
do clipping for you.

triangle → quad

Hanyang University CSE4020, Yoonsang Lee

Back-Face Culling

• Removing back-facing primitives

• Determined by the dot product of

normal and view (camera)

vectors.

Discard!

* This image is from the slides of Prof. JungHyun Han (Korea Univ.): http://media.korea.ac.kr/book/

Hanyang University CSE4020, Yoonsang Lee

Back-Face Culling

• Back-face culling is performed in NDC space.

– Because in NDC space, we can use a single view vector,

(0,0,1), which is much more efficient.

view
vector

* This image is from the slides of Prof. JungHyun Han (Korea Univ.): http://media.korea.ac.kr/book/

Hanyang University CSE4020, Yoonsang Lee

Back-Face Culling

* This image is from https://help.autodesk.com/view/MAYAUL/2024/ENU/?guid=GUID-

B7F70ACE-0F3F-483B-83B5-D9711D6CBAAC

Hanyang University CSE4020, Yoonsang Lee

Hidden Surface Removal

• Removing primitives occluded by

other objects closer to the camera

• Also known as

– Hidden Surface Elimination

– Hidden Surface Determination

– Visible Surface Determination

– Occlusion Culling

Hanyang University CSE4020, Yoonsang Lee

Hidden Surface Removal

• Many algorithms

– Z-buffering (a.k.a. Depth buffering)

– Painter’s algorithm

– BSP tree

– ...

• Z-buffering is the standard method.

• Let’s see the ideas of Painter’s algorithm & Z-

buffering.

Hanyang University CSE4020, Yoonsang Lee

Painter’s Algorithm

• Sorts all polygons based on their distance from the viewer, or
depth, and then paints them in this order, farthest to closest.

• Polygons that are closer to the viewer will be drawn on top of
polygons that are farther away.

• Works on a polygon-by-polygon basis.

Hanyang University CSE4020, Yoonsang Lee

Weakness of Painter’s Algorithm

• What if there are cycles in the sorted
graph?

– The only solution is dividing these polygons
into small pieces.

• Requires sorting all polygons by their
depth whenever the viewer's perspective
or object placement changes.

• → Time-consuming!

Hanyang University CSE4020, Yoonsang Lee

Z Buffering

• Maintain a separate buffer called the z-buffer (a.k.a. depth
buffer), which stores the depth of each pixel on the screen.

• During the rendering process, for each pixel being
processed, the z-buffer is checked to determine if the new
object being rendered is closer to the viewer than the
existing object.

– If it is closer, the new object is drawn, and its depth value is updated
in the z-buffer.

– If it is farther away, the new object is discarded, and the existing
object remains visible.

• Works on a pixel-by-pixel basis.

Z-Buffering: Algorithm
allocate depth_buffer; // Allocate depth buffer → Same size as viewport.

for each pixel (x,y) // For each pixel in viewport.

write_frame_buffer(x,y,backgrnd_color); // Initialize color.

write_depth_buffer(x,y,farPlane_depth); // Initialize depth (z) buffer.

for each polygon // Draw each polygon (in any order).

for each pixel (x,y) in polygon // Rasterize polygon.

color = polygon’s color at (x,y);

pz = polygon’s z-value at (x,y);// Interpolate z-value at (x, y).

if (pz < read_depth_buffer(x,y)) // If new depth is closer:

write_frame_buffer(x,y,color); // Write new (polygon) color.

write_depth_buffer(x,y,pz); // Write new depth.

Frame buffer Z-buffer (Depth buffer)

* The following slide is from the slides of Prof. Kayvon Fatahalian and Prof. Keenan Crane (CMU):

http://15462.courses.cs.cmu.edu/fall2015/

Hanyang University CSE4020, Yoonsang Lee

Rendering Pipeline Again

Vertex Processing

Primitive Processing

Scan Conversion

(Rasterization (in a narrow

sense))

Fragment Processing

Per-sample

Operations

input: vertices in each object's space

vertices in screen space

primitives in screen space

fragments

– at least one fragment per pixel

shaded fragments

output: image

Clipping &

Back-face

culling

Depth test

Hanyang University CSE4020, Yoonsang Lee

Pipeline Input

Vertex Processing

Primitive Processing

Scan Conversion

(Rasterization (in a narrow

sense))

Fragment Processing

Per-sample

Operations

input vertices in each object's space

Clipping &

Back-face

culling

Depth test

transform matrices

textures, lighting model

Pipeline inputs:

• Input vertex data

• Programs that define vertex / fragment

processing stages: vertex / fragment

shaders

• Parameters for computing vertex

positions in normalized coordinates:

transform matrices

• Parameters for computing fragment

color: texture, lighting model

Hanyang University CSE4020, Yoonsang Lee

Pipeline Input

Vertex Processing

Primitive Processing

Scan Conversion

(Rasterization (in a narrow

sense))

Fragment Processing

Per-sample

Operations

input vertices in each object's space

Clipping &

Back-face

culling

Depth test

transform matrices

textures, lighting model

• The black stages are automatically

performed by the system.

• The red stages are performed by the

program you provide, using inputs you

provide.

• That is why we have been focusing on the

red stages in this lecture, and the black

stages were covered only for today.

• I believe you now have the ability to create

your own software renderer that

encompasses the entire process.

Hanyang University CSE4020, Yoonsang Lee

Lab Session

• We don't have a lab today!

Course Wrap-up

Hanyang University CSE4020, Yoonsang Lee

Do you remember?

- What is Computer Graphics?

• The study of creating, manipulating, and displaying

visual content using computers.

mathematical or

geometrical

models

image or

animation (a series

of images)

Computer Graphics

Computer Vision

Hanyang University CSE4020, Yoonsang Lee

Questions about Computer Graphics

• To do this, we should be able to answer:

• (Common:)

• How to express movement, placement, shape, and

appearance of objects

• (About rasterization:)

• How to map 3D objects into 2D screen

• How the whole rendering process is performed

Movement &

placement

3 - Transformations

4 - Affine Space Frame Matrix

7 - Hierarchical Modeling, Mesh

9 - Orientation & Rotation

10 - Character Animation

11 - Curves

Mapping to 2D

screen

5 - Vertex Processing 1

6 - Vertex Processing 2

Shape
7 - Hierarchical Modeling, Mesh

11 - Curves

Appearance
8 - Lighting

12 - More Lighting, Texture

Rendering Pipeline
2 - Rendering Basics

13 - Scan Conversion, Visibility

Hanyang University CSE4020, Yoonsang Lee

How do you feel?

• If you’ve had more fun in this course than other

courses, you already have the potential to do

interesting research in computer graphics!

• I think, passion is the most important thing in

computer graphics.

– That was the starting point for me on this path.

Hanyang University CSE4020, Yoonsang Lee

If "computer graphics" truly feels enjoyable

to you,

• + If you want to do a project related to character

animation:

– You can apply for a graduation project with me in your

4th year.

• + If you want to work more directly on character

animation and study earlier:

– Please email me: yoonsanglee@hanyang.ac.kr

mailto:yoonsanglee@hanyang.ac.kr

Hanyang University CSE4020, Yoonsang Lee

Characteristics of Computer Graphics Research

• Requires a lot of programming.

– If you like programming and have confidence, you are

likely to do well.

• The fascinating aspect is that all the research

findings are presented in a visible format.

– In the field of computer graphics, a video is always

attached when submitting a paper.

Hanyang University CSE4020, Yoonsang Lee

Computer Graphics and Robotics Lab.

• Website:

https://cgrhyu.github.io/

• Youtube channel:

https://www.youtube.com/@cgrlab

• Feel free to visit these sites anytime and take a look

around.

https://cgrhyu.github.io/
https://www.youtube.com/@cgrlab

Thanks for

being a great

class!

	슬라이드 1: Computer Graphics 13 – Scan Conversion, Visibility
	슬라이드 2: Final Exam Announcement (same as before)
	슬라이드 3: Outline
	슬라이드 4: Scan Conversion
	슬라이드 5: Recall: Rendering Pipeline
	슬라이드 6: Scan Conversion
	슬라이드 7: Scan Conversion
	슬라이드 8: Scan Conversion
	슬라이드 9: Scan Conversion
	슬라이드 10: Visibility Problem
	슬라이드 11: Visibility Problem
	슬라이드 12: Visibility Problem
	슬라이드 13: Visibility Problem
	슬라이드 14: Visibility Problem
	슬라이드 15: Visibility Problem
	슬라이드 16: Visibility Problem
	슬라이드 17: Visibility Problem
	슬라이드 18: Visibility Problem
	슬라이드 19: Clipping (Viewing Frustum Culling)
	슬라이드 20: Clipping (Viewing Frustum Culling)
	슬라이드 21: Clipping (Viewing Frustum Culling)
	슬라이드 22: Back-Face Culling
	슬라이드 23: Back-Face Culling
	슬라이드 24: Back-Face Culling
	슬라이드 25: Hidden Surface Removal
	슬라이드 26: Hidden Surface Removal
	슬라이드 27: Painter’s Algorithm
	슬라이드 28: Weakness of Painter’s Algorithm
	슬라이드 29: Z Buffering
	슬라이드 30
	슬라이드 31
	슬라이드 32
	슬라이드 33
	슬라이드 34
	슬라이드 35
	슬라이드 36
	슬라이드 37
	슬라이드 38
	슬라이드 39
	슬라이드 40: Rendering Pipeline Again
	슬라이드 41: Pipeline Input
	슬라이드 42: Pipeline Input
	슬라이드 43: Lab Session
	슬라이드 44: Course Wrap-up
	슬라이드 45: Do you remember? - What is Computer Graphics?
	슬라이드 46: Questions about Computer Graphics
	슬라이드 47
	슬라이드 48: How do you feel?
	슬라이드 49: If "computer graphics" truly feels enjoyable to you,
	슬라이드 50: Characteristics of Computer Graphics Research
	슬라이드 51: Computer Graphics and Robotics Lab.
	슬라이드 52: Thanks for being a great class!

